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Abstract
One of the most critical and yet unsolved problems in phonetic recognition

is the transformation of the continuous speech signal to a discrete ,CpLesenta-
tion for accessing words in the lexicon. In order to find an efficient description
of speech for recognition tasks. our research investigates the use of distinctive
features. Distinctive features are a small set of linguistic units which have the
potential advantage of enabling us to describe contextual and coarticulatory
variations in speech more parsimoniously and thus make more effective use of
available training data.

To access the usefulness of distinctive features, we focus our inquiry on
three questions. First, is there a particular spectral representation that will
yield superior performance over others? Second, how would the extraction and
use of acoustic attributes affect classification performance when compared to
the direct use of the spectral representation? Finally. are there performance
advantages in introducing an intermediate linguistic representation between
the signal and the lexicon?

Our investigation lies within the scope of classifying American English vow-
els using a multi-layer perceptron classifier with a single hidden layer. Vowel
tokens were extracted from the TIMIT corpus. To answer the first question,
several spectral representations were compared. The combination of the out-
puts from Seneff's Auditory Model outperformed all other representations with
both clean and noisy conditions, yielding top-choice accuracies of 66% and 54%
respectively. To answer the next two questions, classification experiments were
conducted under six different conditions, which resulted from systematically
varying three condition variables. These variables specify whether acoustic
attributes were extracted, whether an intermediate feature-based representa-
tion was introduced, and how the feature values were combined. Potential
computational and descriptive advantages were shown for acoustic attributes
and features, respectively.

Thesis Supervisor: Victor W. Zue
Title: Principal Research Scientist
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

Human-machine interaction via speech has always been a dream and a goal

for many people. since speech is regarded as the most natural and efficient

means of communication for humans. However, despite active research in the

field of automatic speech recognition over the decades, the performance of

current technology in restricted domains such as limited vocabulary, isolated

word and speaker dependent tasks still falls below human capabilities. One

of the most critical and yet unsolved problems is the transformation of the

continuous speech signal into a discrete representation for accessing words in

the lexicon. To tackle this problem of speech decoding, it is important for us

to understand how speech can be represented.

Languages can be described in terms of a small set of abstract linguistic

units called phonemes [7]. A phoneme is the basic contrastive unit in the

phonology of a language. Several phonemes concatenated together constitute

a word. Therefore, words with different phoneme sequences are differentiated

in a language. For example, the word "hat" consists of the phonemes /h/, /z/
and /t/ and changing the middle phoneme to /i/ results in the word "heat".

Another example is the word "bow" which consists of the phonemes /b/ and
/aW/. but inserting the phoneme /r/ in between results in the word "brow".

Each phoneme is produced by a unique articulatory gesture, and based OL sim-

10



Id::.Kes and ditferences in thes-t articu'atorv ,:hracter:stics. phonenes can )e

!ru)1oed into classes and sub-classes I2S1. In particular. the American Enziish

.anguage has 40 phonemes. which can be grouped into cowel. and consonants.

The vowels can be further divided into monophthongs and diphthongs. whereas

the consonants can be categorized into semi-cowels. nasals. stops. fricatit'es

and affricates.

The acoustic signal produced when a phoneme is pronounced is subjected

to a wide range of variabilities, since the articulatory movements are con-

tinuous and can vary in uncountably many ways. There are contextual and

coarticulatory effects. where the realization of a phoneme is dependent upon

the identities of the neighboring phonemes. For example, the phoneme /s/ in

"gas" is often palatalized to become /g/ in "gas shortage". Due to the con-

tinuous movement of the articulatory organs under inertia, sharp transitions

from one phoneme to another may not always be produced. The direction

of these phonological effects is not always consistent. as can be reflected by

the absence of palatization of /s/ in a /g/ context in the example "tuna fish

sandwich". To a certain extent. these phonological effects are imposed by the

speaker. There are variations across speakers, as well as variations within the

same speaker. Factors such as dialect. vocal tract shape, speaking style, speak-

ing rate. etc., all play a part in modifying the resultant acoustic outcome of a

phoneme. In addition, there are environmental factors due to recording equip-

ment and noise. Therefore, the task of classifying a given acoustic segment

as a phoneme is immensely complicated due to the wide range of variabili-

ties mentioned above, and classification accuracy will be forseeably low, even

though we may reference a large number of examples of each phoneme in the

training data.

In order to account for the physical sound produced more accurately, the

phone has been used as a descriptive unit. The term allophone is used to

describe a class of phones which are variants of the same phoneme [25]. For

instance, the allophone of /t/ in "butter" is realized as a flap, which involves

1



P , can accor2 :or uunz i the speech sianal ;erv D:ec: e'. ': ,ere

!1o Obiective ;imit to the number ot pInones necessary to descr:be tne soeech

slnal. In ot:.- words, the coveraze of any arbitrarily selected inventory of

phones is not complete. This poses some limitations to the use of phones in

speech recognition. A large inventory of phones is necessary for reasonable

acoustic coverage. which naturally demands a vast amount of training data.

Furthermore. should a new phone be discovered and added to the inventory.

additional training data and acoustic models will be required. Consequently.

systems which utilize the phone as a descriptive unit of speech may not achieve

very high adaptability.

At this point, we may perhaps generalize the characteristics of a desirable

inventory of phonological descriptive units. The inventory should be small

and capable of describing a broad range of sounds. This demands efficiency in

capturing phonemic similarities and contrasts due to coarticulation. thereby

minimizing the amount of redundancy in the description. The description

should also be robust towards environmental variations such as noise. In ad-

dition. it should be salient in the acoustic signal for easy identification. A

potentially better alternative to the use of phones is offered by distinct'e

features. which will be described in detail in the following section.

1.2 Distinctive Features

The concept of distinctive features is very powerful for analyzing speech. Lin-

guists generally believe that phonemes can be represented by a small set of

basic linguistic units - distinctive features [2]. A feature is a minimal unit

which distinguishes a pair of maximally close phonemes. For example. /b/

and /p/ are distinguished by the feature [voicE]. The description corresponds

directly to contextual variability and coarticulatory phenomena. For instance.

the vowel in "dwell" is probably underlyingly an /e/ with an exceptionally

12



iow second :orrnant. since it is influenced bv th f 'eature RO V "D frorn 1t :e',"

ontext. which refers to the rounding of the lips in pronouncing w . and the

feature LATERALI from the right context. which associates with the raising

of the tongue towards the palatal midline during the articulation of I . TEe

complete set of distinctive features can thus describe all phonemically relevant

differences occuring with all possible contrasting phoneme pairs. Phonemes

sharing features in common form natural classes. e.g. nasals. and sounds are

more often confused in relation to the number of features they share. It is

believed that around 1.5 to 20 distinctive features are sufficient to account for

phonemes in all languages of the world.

Distinctive features are linguistically motivated, and manifest themselves

as their corresponding acoustic correlates in the speech signal. Phonological

and phonetic research conducted over the past three decades has resulted in a

wealth of information, albeit incomplete, on the acoustic correlates of distinc-

tive features. Some of the findings and ideas are presented in the following:

Fant's "segmental theory' of speech [6] regards connected speech as seg-

ments - the temporal contrasts are described by manner features. and contin-

uous variations within the segments or across segment boundaries are described

by place features. A manner feature correlates with the speech wave through

its production characteristics, for example, the feature [VOICE] is character-

ized bv the vocal cord vibrations modulating an air stream, which causes the

speech wave to have quasi-periodic fine structure in frequency and time. A

place feature correlates with the speech wave through its articulatory charac-

teristias. For example. the feature (ROUND] is realized by protruding the lips

and drawing them relatively close, resulting in the lowering of the first three

formants (especially F2 in most cases) in the speech signal. Therefore, it can

be seen that the acoustic correlates of distinctive features tend to be quite

localized in the speech signal. Features can co-occur and reinforce other fea-

tures, and in some cases, certain features provide markers that indicate regions

where properties associated with other features are evident in the sound. For

13



:ampie. ev icence :or \o,:a,-:o( vibra::on aocaa: :h -.ea;ure 'oz-:
'isualiv occurs in the vicinity of changes in the :-OONSO.A.TAL prooertv.

Stevens defined the acoustic correlates of dist-nctive features using a ii:-

ferent approach 13.51. He observed many examples of a non-monotonic or "'sie-

moidal" relation between acoustic and articulatory parameters as schematized

in Figure 1.1. As the articulatorv parameter is varied gradually, there are

ranges where the acoustic parameter is relatively invariant, but as the artic-

ulatory parameter moves through the rapid transition region of the sigmoid.

the acoustic parameter undergoes a qualitative change. Similar phenomena

have been observed between auditory and acoustic parameters. He suggested

that these "quantal'" relations play a principal role in shaping the inventory

of articulatory states and their acoustic consequences that are used to signal

distinctions in language. The acoustic attributes that occur in the plateau-like

regions of the relations are the acoustic correlates of the distinctive features.

In his examples. these acoustic correlates should be described in relational

terms. This may make distinctive features a purer representation of speech.

because relational parameters are more likely to be independent of vocal-tract

size. speaking rate, and phonetic contexts than absolute parameters such as

frequencies of spectral components. Therefore, Stevens suggested that an ut-

terance in speech may have an underlying representation in terms of distinctive

features. possibly expressed as a hierarchy of matrices.

Despite all the information we have about the acoustic correlates of dis-

tinctive features, many questions still exist. The hierarchical structure of dis-

tinctive features is not completely known. The acoustic correlates of some

features have not been fully understood and characterized. It is also uncer-

tain whether the features should be assigned binary values, and how much

orthogonality exists between different features. But nevertheless, there are

reasons to believe that the concept of distinctive features is potentially very

useful for automatic speech recognition. The compact inventory of features

enables us to make more effective use of training data. The descriptive power

14



6.E

Articulatory Parameter

Figure 1.1: Schernatization of the quantal relation between an acoustic and an
articulatory parameter

of features allow us to account for contextual influence more parsimoniously.

For example. the vowel /u/ occuring in an alveolar context is often fronted to

become /i/. So instead of carrying two separate acoustic models for these two

vowels respectively, we may perhaps simply note that they share most features

except for BACK!. as a result of context. and therefore the feature [BACK" is

distinctive. In some cases. coarticulatory effects provide redundant sources of

information about the adjacent phonemes. and this may contribute to sustain-

ing high recognition performance. Furthermore, distinctive features can serve

as a powerful data reduction and refinement scheme that can be used to save

computation, since it may be possible to describe speech by extracting the

acoustic correlates of distinctive features, instead of using the entire spectral

representation.

1.3 Decoding Strategies of the Speech Signal

Our next step is to explore the use of distinctive features in decoding the speech

signal. where an acoustic representation is mapped to the lexicon. Specifically,

in this thesis we focus on phonetic classification. One possible method is to in-

13



an in .... e(iate represen at :on c, ': >: . a res:. j•,vee' >2e ->2:.:

and the lexicon. This approach. as iiiustra.ed in F _'e .. .ea" , -

fex:biit. 'han the direct classification of phonemes from the signal. However.

it is not (:ear whether a set of acoustic attributes is required to bridge the gap

between the acoustic representation and the phonological representation. Dis-

tinctive features manifest themselves as their acoustic correlates in the speech

signal. and phonetic contrasts are therefore inherent in the signal. We can-

not as yet clearly characterize acoustic correlates of the various distinctive

features, but it is very likely that each feature relates to a region in the acous-

tic space. and there is a great '?al of overlap among such regions. In other

words, the acoustic correlates may exhibit varying degrees of prominence in

the acoustic signal. and some acoustic representations may be more revealing

than others with regard to the underlying features. Moreover. in the process

of mapping the acoustic representation to the intermediate feature representa-

tion. it may be constructive to extract some acoustic attributes which enhance

feature characteristics. Alternatively, since these acoustic attributes are based

on the distinctive features. the phonological representation may be bypassed

entirely. Amongst these several approaches to decode the speech signal, which

have all been included in Figure 1.2. it is not certain which would be the best

strategy. Therefore. the objective of this thesis is to assess the usefulness of

distinctive features for phonetic classification, and compare the different meth-

ods of introducing them as an intermediate representation in our classification

framework.

1.4 Thesis Overview

In this thesis, we attempt to address issues related to the use of distinctive

features for phonetic classification. More formally, we ask three questions.

First. is there a particular spectral representation that is preferred over others?

Second. should we use the spectral representation directly for phoneme/feature

16
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Basline hnloical Units Intermediate
3) Representation

F - Speech Signal

Figure 1.2: Using an Intermediate Representation in the Process of Decoding
the Speech Signal
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*,-,s *.:e i: ro, cu n an nter:nediate .eature- based representat~on -)et',een

the signal and the jexicon offer performance advantages?

-u rov an answer to the first question. we conduct a set of phoneme

classification experiments using a variety of input representations. This is

described in Chapter 2. We may infer that the representation which gives

the best performance should also be the most suitable for ase in defining and
quantifying acoustic attributes corresponding to the distinctive features.

Then in Chapter 3 we proceed to evaluate the different strategies for de-

coding the speech signal. Our experimental paradigm includes the baseline

approach where the acoustic signal is directly used for phonetic classification.

Another approach involves extracting acoustic attributes from the signal before

phonetic classification is done. A third approach introduces an intermediate

phonological representation between the signal and the lexicon, and the final

approach includes both attribute extraction and an intermediate representa-

tion.

Following this, Chapter 4 compares several acoustic representations on the

basis of their ability to perform acoustic segmentation. Phonemes are the

smallest unit which are concatenated to form speech. A sequence of phonemes

may constitute a small structure such as a syllable or a word, or a large struc-

ture like a phrase or a sentence. This sequential phonological descriptzor. is

manifested as a segmental acoustic description, and there are clearly overlaps

from segment to segment. In this respect. a descriptive acoustic representa-

tion should preserve acoustic regularities within a segment which lies between

acoustic landmarks, as well as transitional acoustic behavior which occurs

across segment boundaries.

The final chapter presents a summary of this thesis as well as possible

extensions for future work.

18



Chapter 2

Selecting an Acoustic
Representation

In the selection of an optimal signal representation for an automatic speech

recognition system, it is important to bear in mind that the parametric repre-

sentation should preserve all the relevant aspects of the speech signal for the

recognition task in hand and eliminate the irrelevant details. The representa-

tion should also be compact, for the sake of computational economy.

Historically, short time spectral representations used as input to a recog-

nizer have included those based on the Discrete Fourier Transform, as well as

those based on the all-pole modelling of speech (Linear Predictive Analysis)

[2S]. Since it is believed that speech is optimized through the evolution of

language for the characteristics of human hearing, and there is physiological

and psychoacoustical evidence that the ear performs spectral analysis on the

speech signal, researchers have built front ends which emulate natural audi-

tory processing [1,3,13]. In some cases, such auditory models have helped

to improve recognition performance. There are also the mel-frequency rep-

resentations [16], which is an engineering approximation of the ear's critical

band filtering, and has recently gained popularity in the speech recognition

community.
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2.1 Previous Work with Comparison of Parame-
tric Representations

Several experments on comparing signal representations have been reported

in the past. Mermelstein and Davis ?16] compared five representations, namely

the mel-frequency cepstral coefficients (MFCC). the linear frequency cepstral

coefficients. the linear prediction cepstrum. the linear prediction spectrum. and

the reflection coefficients. On the task of recognizing monosyllabic words spo-

ken continuously by two speakers. they found that a set of 10 MFCC resulted

in the best performance. suggesting that the mel-frequency cepstra possess

significant advantages over the other r-resentations.

Hunt and Lefebvre [14] compared the performance of their psychoacoustically-

motivated auditory model vith that of a 20-channel mel-cepstrum. The first

eight discriminant functions obtained by applying linear discriminant anal-

ysis on the two auditory model outputs were compared with 8 unweighted

MFCC (Cl to C8). Experiments conducted include speaker-dependent and in-

dependent conditions. connected and quasi-isolated word recognition, as well

as noisy and spectrally tilted speech. The auditory model gave the highest

performance under all conditions, and is least affected by changes in loudness,

interfering noise and spectral shaping distortions.

Later. Hunt and Lefebvre [15] conducted another comparison with the audi-

tory model output. the mel-scale cepstrum with various weighing schemes. cep-

strum coefficients augmented by the 6-cepstrum coefficients, and the IMELDA

representation which combined between-class covariance information with within-

class covariance information of the mel-scale filter bank outputs to generate a

set of linear discriminant functions. The tests conducted were similar to those

in the previous comparison. The IMELDA outperformed all other representa-

tions.

In sunmary, these studies generally show that the choice of parametric rep-

resentations is very important to recognition performance, and auditory-based
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rezentations. In rhe comparison of the psvchoacoustica,-:otivated auditor',

model with NIFCC. however, different methods of analysis led to different

resuits. Therefore. it will be interesting to compare outputs of an auditory

model with the computationally simpler mel-based representation when the

experimental conditions are more carefully controlled.

2.2 Overview of the Comparison Experiments

This chapter describes a comparative study of six acoustic representations on

the task of vowel classification using an artificial neural net (ANN) classifier.

Three of the representations are obtained from the auditory model proposed

by Seneff [31.301. Two representations are based on mel-frequency and the

remaining one is based on the conventional Fourier transform. Attention is

focused upon the relative classification performance of the signal representa-

tions, the effect of increasing training data on the robustness of the results.

and the tolerance of the different representations to additive white noise.

To strive towards a fair comparison of the various signal representations.

we restricted the ANN classifier to have the same architecture throughout the

experiments. All input feature vectors were measured at the same points in the

speech signal. and the dimensionalities of the input vectors were all identical.

2.3 Signal Processing

The speech signal is sampled at 16 kHz and a spectral vector is computed

once every 5 ms. Three feature vectors, representing the average spectra for

the initial, middle, and final third of every vowel token, are determined for

each representation.. These vectors attempt to crudely capture the dynamic

characteristics of vowel articulation. All the acoustic representations result in

a 40-dimensional feature vector covering a frequency range of slightly over 6

kHz.
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Figure 2.1: Block diagram of Seneff's auditory model

2.3.1 Seneff's Auditory Model

Seneff's Auditory Model (SAM) has three stages [30]. as illustrated in Figure

2.1. Stage I consists of a bank of 40 critical band filters, spaced linearly on a

Bark frequency scale. The center frequencies of these filters range from 130 to

6400 Hz, as shown in Figure 2.2. The outputs of this stage, the critical band

envelopes, are fed into Stage II which models the transformation from the

basilar membrane vibration to the the auditory-nerve fiber responses. This

part of the model incorporates non-linearities such as dynamic range compres-

sion. half-wave rectification, short-term and rapid adaptation. and forward

masking. The output of this stage represents a probability of firing along the

auditory-nerve. This will be processed by the envelope detector in Stage III

to become the mean probability of firing along the auditory nerve, called the

mean rate response. The other module, the synchrony detector, determines

the synchronous response of each filter by measuring the extent of dominance

of information at the filter's characteristic frequency. This output is therefore

called the synchronous response. Both the mean rate and the synchronous

responses result in a 40-dimensional feature vector.
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Figure 2.2: Frequency response characteristics of the critical band filter bank
plotted along (a) a BarK scale and (b) a linear frequency scale (after Seneff)
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Since the mean ra-e :tezone ! .IR and the -_ 'nchron: reSponse , R, were

intended to encode complementary acoustic information in the acoustic si-nai.

a representation combining the two is also included in our experiments. This

is done by appending the first 20 principal components '41 of the IR and SR

to form another 40-dimensional vector (SAM-PC).

2.3.2 The Mel-frequency Representations

To obtain the mel-frequency spectral and cepstral coefficients (MFSC and

MFCC. respectively), the signal is pre-emphasized via first differencing and

windowed bv a 25.6 ms Hamming window. A 256-point discrete Fourier Trans-

form (DFT) is then computed from the windowed waveform. Following Mer-

melstein et al [16]. these Fourier transform coefficients are later squared. and

the resultant magnitude squared spectrum is passed through the mel-frequency

triangular filter-banks described below. The log energy output (in decibels) of

each filter. X, k = 1, 2.... 40, collectively § rm the 40-dimensional MFSC vec-

tor. Carrying out a cosine transform on the MFSC according to the following

equation yields the MFCC's, Y,, 1.2 ... 40.

40 1 n'

=, E Xk cos~i(k-k=1 4

Some details about the cosine transform are provided in Appendix A. The

lowest cepstrum coefficient, Co, is excluded to reduce sensitivity to overall

loudness.

In order to achieve as fair a comparison as possible, the mel-frequency

triangular filter banks are designed to resemble the critical band filter bank

of SAM (see Figure 2.3). The filter bank consists of 40 overlapping triangular

filters spanning the frec,: acy region from 130 to 6400 Hz. Thirteen triangles

are evenly spread on a linear frequency scale from 130 Hz to 1 kHz. and the

remaining 27 triangles are evenly distributed on a logarithmic frequency scale

from 1 kHz to 6.4 kHz, where each subsequent filter is centered at 1.07 times

the previous filter's center frequency. Since the bandwidths of the triangular
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Figure 2.3: Design of the mel-frequency triangular filters

filters increase with the center frequencies. the area of each filter is normalized

to unit magnitude in order to avoid amplification of the higher frequency

coefficients through bandpass summation (261.

2.3.3 The Discrete Fourier Transform

To obtain the Fourier Transform representation. a DFT is computed in the

same manner as described previously. Cepstral smoothing is performed to

obtain a 256-point DFT, which is then down-sampled to 40 points. This

processing sequence serves to filter out some non-essential pitch information.

2.3.4 Noise

One of the experiments which will be described below investigates the relative

immunity of each representation to additive white noise. The noisy test tokens

are constructed by adding white noise to the signal to achieve a peak signal-to-

25



141 il:i

Figure 2.4: Wideband spectrograms showing clean and noisy speech for the
vowel /a/

noise ratio (computed with the maximum energy in a frame of an utterance)

of 20dB. which corresponds to a signal-to-noise ratio (computed with average

energies) of slightly below 10dB. Figure 2.4 shows wideband spectrograms of

one of the test tokens before and after noise corruption, and Figure 2.5 shows

the corresponding spectra at the midpoint of the vowel token.

2.4 Task and Corpus

Comparisons of the various signal representations are based on the task of

classifying 16 American English vowels using tokens excised from the acoustic-

phonetically compact portion of the TIMIT database (191. It is a classification

task in that the boundaries of the vowel tokens are provided by the time-

aligned phonetic transcription, and the classifier is only asked to determine

the most likely label. The 16 vowels include 13 monophthongs / i, e, e, z, a,

o, A, 3, U. u, i, T/ and 3 diphthongs / a y, oY, a"/. No restrictions were imposed

on the phonetic contexts in which they may appear. The training data consist

of over 20,000 tokens, excised from 2,500 continuous sentences spoken by 500

speakers. The testing data consist of nearly 2.000 tokens, excised from 250

26



Z ,,,i ,

~ I ~ .1 1

Clean Speech Noisy Speech

Figure 2.5: Smoothed DFT spectra of both clean and noisy speech for the
midpoint of the vowel /a/

Training Testing Training Testing
Speakers (M/F) Speakers (M/F) Tokens Tokens
500 (357/143) 50 (33/17) 20,519 1,879

Table 2.1: Corpus used for the experiments

continuous senttnces spoken by 50 new speakers. The size and contents of the

corpus are summarized in Table 2.1.

2.5 The Artificial Neural Network Classifier

The classifier used for our experiment is an artificial neural network based on

multi-layer perceptrons (MLP) [29. The particular MLP architecture for pho-

netic recognition has previously been described in great detail by Leung [211.

The MLP is found to have several characteristics which are particularly advan-

tageous for phonetic classification tasks, and in some cases, especially suited

to our investigation. First of all, unlike a Gaussian classifier, for example, it

does not make assumptions about the underlying probabiiity distribution of

the input data. Therefore, the classification performance is not penalized by
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Second. the .ILP utilizes the :raining of connection wei~nts :, :orr ec

sion regions. instead of using specific distance metrcs ,such as the' Euci:dean

or Itakura 17', to measure similarity. For traditional classifiers which do not

assume probability distributions, the choice of a distance metric may be critical

for robustness and performance [18]. Also. the distance metric may pose con-

straints on the input representation of a classifier. For example. discrimination

by the Euclidean distance relies on differences in energy in the speech signal.

and may be less suited for representations such as the synchronous response

of SAM which has its energy information normalized. Since the experiments

reported here involves several different acoustic representations. the MLP is

particularly suitable for our purposes.

Third. the MLP accepts both continuous inputs such as acoustic attributes

and/or binary inputs like linguistic features. This property, together with the

two mentioned above, allows us to integrate heterogeneous sources of infor-

mation as an input representation. as in the SAM-PC representation in our

experiments.

Fourth. classification by the MLP - done through maximizing the differ-

ences between different classes by focusing on errors made at the decision sur-

faces. i.e. minimizing an error criterion. This is in contrast to the approaches

which model individual classes independently of others, and may potentially

be more effective in improving classification performance.

Fifth, the MLP is capable of forming disjoint decision regions in the multi-

dimensional input space for the same class without supervision. This may be

especially suitable for modelling the various allophones of a phoneme.

Finally, the MLP can be used as a hetero-associator to associate pairs

of patterns. It is capable of mapping the complex speech signal to different

levels of phonological and/or phonetic representations. Therefore, it can allow

us to perform phonetic classification experiments as well as feature mapping

experiments, as described in the next chapter.
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2.5.1 Network Structure

The network used in this thesis has one hidden layer, and 's iliustrated in

Figure 2.6. The number of output units N0 depends on the number of classes

to be recognized. In this case. there are 16 output units in our network, cor-

responding to the 16 vowels. The size of the network is determined by the

number of units in the hidden layer, N . The number of input units N

depends on the amount of input information available. In our experiments.

the average spectra corresponding to the initial, middle and final third of the

vowel token are appended together to form a 120-dimensional feature vector

and used as input. This is done to implicitly capture the context dependency

of vowel articulation. The inputs are normalized in amplitude and the connec-

tion weights are center initialized for better learning capabilities [201. During

supervised training, the inputs are fed forward through the network and the

connection weights are updated for each training token to minimize a weighted

mean squared error criterion. Details of the training and testing algorithm as

well as previously improved parameters such as the number of hidden units

that are used here have all been described in [21].

2.6 Results

For each acoustic representation, four separate experiments were conducted

using 2,000, 4,000, 8,000, and finally 20,000 training tokens. In general, clas-

sification performance improves as more training tokens are utilized. This is

illustrated in Figure 2.7, in which we display test set accuracies for the six dif-

ferent acoustic representations, using 2,000 and 20,000 training tokens. Each

data point of test set accuracy is the average of 6 iterations, and the fluctua-

tions between successive iterations are around 1%. The rest of the statistics

are included in the Appendix B. For a fully trained network, the classification

accuracies for different acoustic representations differ by about 5%, with the

auditory-based representations consistently yielding better results than oth-
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Figure 2.6: Structure of the Multi-Layer Perceptron Classifier

ers. According to a significance level of 0.01 using McNemar's test (91, the

differences in performance of SAM-PC over each of the remaining representa-

tions are statistically significant, but this does not apply to the differences in

performance between the remaining pairs of representations, as illustrated in

Table 2.2.

In order to get some ideas about the robustness of the various representa-

tions, we also determined for each experiment the classification performance

_ _ _ SAM PC Mean Rate Synchrony MFSC MFCC DFT
SAM PC SAM PC SAM PC SAM PC SAM PC SAM PC
Mean Rate same same same same
Synchrony same same same
MFSC same same
MFCC same
DFT

Table 2.2: Results of McNemar's test on the performance of different acoustic
representations (significance level = 0.01).
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Figure 2.7: Performance of the six signal representations for 2,000 and 20,000
training tokens
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Figure 2.8: Effect of increasing training data on testing accuracies

on training data. Figure 2.8 shows accuracies on training and testing data as

a function of the amount of training tokens for the combined auditory repre-

sentation and the popular mel-frequency cepstral coefficients. As the size of

the training set increases, so does the classification accuracy on testing data.

This is accompanied by a corresponding decrease in performance on training

data. At 20,000 training tokens, the difference between training and testing

set performance is about 5% for both representations.

To investigate the relative immunity of the various acoustic representa-

tions to noise degradation, we determine the classification accuracy of the
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Figure 2.9: Performance of the different representations on noisy speech

noise-corrupted test set on the networks after they have been fully trained

on clean tokens. The results with noisy test speech are shown in Figure 2.9.

together with the corresponding results on the clean test set. The decrease

in classification accuracy ranges from about 12% (for the combined auditory

model) to almost 25% (for the DFT).

2.7 Discussion

Our results indicate that, on a fully trained network, acoustic representations

based on auditory modelling consistently outperform other representations.

The best among the three auditory-based representations, SAM PC, achieved

a top-choice accuracy of 66%, which is comparable to those reported in the

literature. For example, Leung [21] reported a classification accuracy of 64%,
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with the same network and the same jata set. when synchrony and mean-rate

responses were used without principal component analysis.

When the two outputs of SAN are used separately, the performance typ-

ically drops by 3-4', with the mean-rate response performing better than

the synchrony response. This result is somewhat surprising, since the gen-

eralized synchrony detector (GSD) in SAM has the property of enhancing

spectral peaks, whose locations are important for correct vowel identification.

Apparently the mean-rate response also preserves the necessary acoustic in-

formation for vowel identification. It is also possible that the GSD algorithm

over-sharpens the peaks in some cases. thus making the network unduely sensi-

tive to amplitude variations at formant locations. Furthermore, the synchrony

response lacks energy information, and cannot therefore distinguish as well

between inherently louder vowels such as /a/ and other softer vowels such as

/u/.
The MFSC nd MFCC representations performed similarly on the fully

trained nctwork, worse than the auditory-based representations and slightly

better than the DFT. At first glance, it may appear that the discrepancies

art; small, since the error rate is only increased slightly (from 33% to 38%).

However, previous research on human and machine identification of vowels,

independent of context, have shown that the best performance attained is

around 65% [27]. Looking in this light, the difference in performance becomes

much more significant.

One legitimate concern may be that principal component analysis has been

applied to SAM PC, but not to MFCC. However, the cosine transform used in

obtaining the MFCC perform a similar function as principal component anal-

ysis. To ensure that a fair comparison has been made, we have also conducted

experiments in which principal component analysis is used on the MFCC.

Taking 40 principal components as input yielded an average performance of

61.2%, which demonstrates that principal component analysis does not further

improve the performance of the MFCC.
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Figure 2.10: Effect of Varying the Number of MFCC on Vowel Classification
Performance

Another concern may be that too many MFCC have been used. The higher

order coefficients carry higher frequency spectral information, which is essen-

tial for vowel classification. So, using a large number of MFCC may to a

certain extent cause classification performance to degrade. To resolve this is-

sue, experiments have been performed where the number of MFCC used for

the same vowel classification task is gradually increased from 5 to 40. Results

are graphed in Figure 2.10, which shows classification performance does not

decrease as more MFCC are used. Therefore, we may conclude that auditory-

based signal representations are preferred, at least within the bounds of our

experimental conditions.

As illustrated in Figs 2.7 and 2.8, the relative performances of the six rep-
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resentations remained fairi v sable as more trainin data were used. Overall.

classification accuracy improved by an average of 9' as the training data
increased ten-fold. The accuracies on the training set. on the other hand. de-

crease as expected with more training, suggesting that the network began to

abstract relevant acoustic cues for phonetic distinction, rather than memoriz-

ing individual differences among tokens. The accuracies converge to less than

2% for DFT and over 5% for SR. If we regard the convergence between accura-

cies on the training and test sets as an indication of the increasing robustness

of the network, then we can see from Figure 2.8 that for different acoustic

representations, the robustness is increasing at approximately the same rate.

With additional training data, we would expect that the test set accuracy can

continue to improve. However, it is not very likely that relative performances

will change.

In the presence of noise, classification performance degraded for all the

representations. While the relative performances follows the trend of clean

speech. the differences between different representations varied substantially.

The degradation of the SAM representations was least severe - about 12%,

whereas the mel-representations showed a drop of 17%. The DFT is most

affected by noise, and its performance degraded by over 24%. Figure 2.11

shows the clean and noisy versions of the same vowel token shown in Figure 2.4.

The respective spectra at the mid-point of the vowel token are shown in Figure

2.12. The fact that the SAM representations are more immune to noise can be

gleaned from comparing Figure 2.11 with Figure 2.4, and comparing Figure

2.12 with Figure 2.5. Most of the formant information in the noisy signal is

preserved in the synchrony response, but such information is difficult to detect

in the DFT.

We believe that training with clean speech and testing with noisy speech

is a fair experimental paradigm since the noise level of test speech is often

unknown in practice, but the environment for recording training speech can

always be controlled.
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Figure' 211: Synchrony spectrograms showing clean and noisy speech for the
vowel /a/

2.8 Chapter Summary

In this chapter, we reported the results of a set of vowel classification exper-

iments that compare the relative merits of six acoustic representations. We

found that, for clean testing tokens, the auditory based representations hold a

small but consistent advantage over the other representations. This advantage

is magnified greatly when the testing tokens are corrupted by noise. In the

following chapter, we will be pursuing other issues related to the acoustic to

lexical transformation. Specifically, we would like to determine whether one

should use the signal representation directly, or attempt to extract acoustic

attributes that may better signify phonetic contrasts. We will also explore

the possibility of introducing distinctive features as an intermediate lexical

representation. The auditory models will be used for all of these experiments.
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point of the vowel /a/
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Chapter 3

Attribute Extraction and
Distinctive Features

In this chapter, we continue our study by focusing on the two remaining ques-

tions: -Should we use spectral representation directly for phoneme/feature

classification, or should we extract and use acoustic attributes instead?" Fur-

thermore. does the introduction of an intermediate feature-based representa-

tion between the signal and lexicon offer performa-ace advantages?" We have

chosen to answer these questions by performing a set of phoneme classifica-

tion experiments in which conditional variables are systematically varied. The

usefulness of one condition over another is inferred from the performance of

the classifier.

3.1 Experimental Paradigm

We have mentioned in Chapter 1 (Figure 1.2) that it is uncertain how we

should utilize distinctive features in our speech decoding strategy. We can ex-

tract acoustic attributes based on distinctive features, and use the attributes

to replace the direct use of the spectral representation. We can also implement

an intermediate phonological representation between the signal and the lexi-

con based on distinctive features. It is not clear which method we should use.

or whether we should use both. Algorithms need to be designed for extracting

acoustic attributes, for mapping the acoustics to the intermediate phonological
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representation. as weil as bridaina the gap between thle intermediate represen-

tation and the lexicon. In this chapter. we describe an experimentai paradigm

designed to compare the various possible pathways of speech decoding. Three

experimental parameters were systematically varied, resulting in six different

conditions, as depicted in Figure 3.1. These three parameters specify whether

the acoustic attributes are extracted. whether an intermediate distinctive fea-

ture representation is used. and how the feature values are combined for vowel

classification.

In some conditions (cf. conditions A, E, and F), the spectral vectors were

used directly, whereas in others (cf. conditions B, C, and D), each vowel token

was represented by a set of automatically-extracted acoustic attributes. In

still other conditions (cf. conditions C, D, E, and F), an intermediate represen-

tation based on distinctive features was introduced. The feature values were

either used directly for vowel identification through one bit quantization (i.e.

transforming them into a binary representation) followed by table look-up (cf.

conditions c and E), or were fed to another MLP for further classification

(cf. conditions D and F). Our experiments were again conducted using an

MLP classifier for speaker independent vowel classification. Taken as a whole,

these experiments will enable us to answer the questions that we posed earlier.

For example, we can assess the usefulness of extracting acoustic attributes by

comparing the classification performance of conditions A versus B, D versus F

or c versus E. Each of these three pairs show the contrast between using the

spectral representation directly and extracting and using acoustic attributes.

To assess the usefulness of incorporating an intermediate feature-based repre-

sentation, we can compare conditions B versus c, or B versus D. These results

should be corroborated by comparing conditions A versus E and A versus F

respectively. As for assessing the effectiveness of feature classification, we can

compare conditions c versus D, and E versus F, and it is expected that the two

comparisons should yield similar observations.
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Training Testina Training 1esting
Speakers NL['F) -Speakers (Ni/F) Tokens Tokens
500 13.5T,'143) 50 1:33 1T' IS.558 1.672

Table 3.1: Corpus used for the experiments

3.2 Task and Corpus

The task chosen for our experiments is the classification of 13 monophthong

vowels in American English - /i. i. e. e. x, a, 0, A. ., U, ,. i and 3'/. The diph-

thongs are excluded here because their dynamic nature may render distinctive

feature specification ambiguous. Consequently, there are fewer training and

testing tokens compared with our previous corpus (cf. Table 3.1).

Following the conventions set forth by others [37], we characterized the 13

vowels in terms of 6 distinctive features. The feature values for these vowels

are summarized in Table 3.2.

iIi e e x a 3 o A U 3 U
HIGH + + .. . . . .- -+1+
TENSE + - - -. -

LOW . . + + . . . . .

BACK - + + + + + -r-
ROUND - - - + + - +- - -

RETROFLEX - . . . . . . .

Table 3.2: The Set of Distinctive Features used to characterize 13 vowels

3.2.1 Spectral Representation

The spectral representation is obtained from Seneff's auditory model, since

its representations have been found to be superior to others during our previ-

ous study [23]. While the combined mean rate and synchrony representation

(SAM-PC) gave the best performance, it may not be an appropriate choice for
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our present work. since the heterogeneous nature of the represenat:on poses

difficulties in acoustic attribute extraction. As a result. we have seiected the

next best representation - the mean rate response iMR). Th s representation

consists of 40 spectral coefficients spaced half bark apart and computed ev-

ery 5 ms. A 120-dimension feature vector is obtained by appending the three

average vectors representing the input token.

3.2.2 Acoustic Attributes

Each vowel token is characterized either directly by a set of spectral coeffi-

cients. or indirectly by a set of automatically derived acoustic attributes. In

the latter case, the attributes that we extract are intended to correspond to

the acoustic correlates of distinctive features. However. we are confronted

with several problems. First, we do not as yet possess a full understanding

of these correlates for each feature. Even in cases where these correlates have

been proposed, they are typically described in terms of parameters such as for-

mant frequencies, which are obtained through heuristic methods and can lead

to catastrophic measurement errors. Besides, we must somehow capture the

variabilities of these features across speakers and phonetic environments. For

these reasons, we have adopted a more statistical and data-driven approach.

In this approach., a general property detector is proposed, and the specific nu-

merical values of its free parameters are determined from training data using

an optimization criterion proposed by Phillips (38]. In our case, the general

property detectors chosen are the spectral center of gravity and its amplitude.

This class of detectors may carry formant information, and can be easily com-

puted from a given spectral representation. As discussed previously, the mean

rate response is used.

The process of attribute extraction is as follows. First, speaker normal-

ization is done by shifting the spectrum down linearly on the bark scale by

the median pitch [32]. Then, for each distinctive feature, the training tokens

are divided into two classes: [+feature] and [-feature]. The lower and upper
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:requencv edges or "ree parameter" or the spectral center of ravi.,- are

-osen so that the resultant measurement can maximize the Fishers Discrimi-

nant Criterion i FDC) between the classes '-feature' and '-feature-. The FDC

is defined as the ratio of the difference in class means and the total within-class

scatter of the samples. It is given by the following formula: r.5]

J(.y) = rn(x.y) -

where x. y are the lower and upper frequency edges used to compute the spec-

tral center of gravity, ml (x. y) and m 2(x. y) are the means of centers of gravity

for the classes [+feature] and [-featurel respectively, and s l (x. y) 2 and s2(x. y) 2

are the variances of centers of gravity for the classes [+feature] and [-feature!

respectively.

For the features [BACK], [TENSE], [ROUND], and [RETROFLEX] only one at-

tribute per feature is used. For [HIGH] and [LOW], we found it necessary to

include two attributes per feature, using the two sets of optimized free parame-

ters giving the highest and the second highest FDC. These 8 frequency values.

together with their corresponding amplitudes, make up 16 attributes for each

third of a vowel token. Therefore, performing acoustic attribute extraction

has the effect of reducing the input dimensions from 120 to 48. The specific

attributes used are included in Appendix C.

3.3 Classification Procedures

The classifier used for our experiments here is again the MLP with a single

hidden layer with 32 hidden units. As can be seen from Figure 3.1, some of the

MLP's classify the input directly into one of 13 vowels and therefore possess 13

output units. The others map the input into an intermediate representation of

distinctive features. In this case, the output consists of six units, each corre-

sponding to some probability measure of the accurate mapping of a distinctive

feature.
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Figure :3.2: Performance of the six classification pathways in our experimental
paradigm

The structures of all the above networks are similar to that used in the

signal representation experiments. Each has a single hidden laver with 32

hidden units. Once again, input normalization and center initialization have

been used "201.

3.4 Results

The results of ouir experiments are summarized in Figure 3.2. plotted as vowel

classification accuracy for each of the conditions shown in Figure 3.1. The

values in this figure represent the average of 6 iterations. performance variation

among iterations of the same experiment amounts to about 1c.

Comparing the results for conditions A and B, we found no statistically sig-

nificant difference in performance. according to McNemar's test, as we replace

the spectral representation by the acoustic attributes 1see Table 3.3). This

result is further corroborated by the comparison between conditions c and E.

and D and F.

Figure 3.2 shows a 4-57 deterioration in performance when one simply

maps the feature values to a binary representation for table look-up (i.e.. com-
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Doarnq conditions . to E and B to C,. This deterioration is statstica.iv '- -

nificant (Table 3.31. We can also examine the accuracies of binary feature

assinment for each feature. and the results are shown in Fizure 3.:3. The

accuracy for individual features ranges from 87% for [RoNDi and 'TENSE to

9 % for [RETRoFLEX1. and there is again little difference between the results

using the mean rate response and using acoustic attributes. It is perhaps not

surprising that table look-up using binary feature values results in lower per-

formance, since it would require that all of the features be identified correctly.

Acou.uc Ambutes

-0~I
9q0

as0

4. '10,

~&60'

50
IGH Low BAaC Tn4S3 RIO 'l EMof LEx A L

DbdD~v* Fas,.

Figure 3.3: Distinctive Features Mapping Accuracies for the Mean Rate Re-
sponse and Acoustic Attributes

However, when we use a second MLP to classify the features into vowels, a

considerable improvement (> 4%) is obtained to the extent that the resulting

accuracy shows no significant difference from other conditions (cf. conditions

A and F. and conditions B and D).

3.4.1 Significance Testing

Table 3.3 shows the result of McNemar's test comparing different conditions in

the paradigm with the significance level of 0.001. The entries in the table may
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either show the better condition. or indicate that the two conditions are thnle
same. Essentialy. there is no significant deterioration in performance as we

replace the spectral representation with attributes, no significant deterioration

in performance as we incorporate an intermediate feature-based representation.

but significant deterioration if the feature values are quantized and then used

for table-lookup.

A B _ C D E F
A same A same A same
B B same B same
C D same F
D D sameE -F
F

Table 3.3: Results of McNemar's test comparing the six conditions in our
paradigm (significance-level = 0.001)

3.5 Discussion

Our investigation on the use of acoustic attributes is partly motivated by the
belief that these attributes can enhance phonetic contrasts by focusing upon

relevant information in the signal. thereby leading to improved phonetic clas-

sification performance when only a finite amount of training data is available.

The acoustic attributes that we have chosen are intuitively reasonable and
easy to measure. But they are by no means optimum, since w,, did not set
out to design the best set of attributes for enhan ; vowel contrasts. Nev-
ertheless, their use has led to performance comparable to the direct use of
spectral information. With an improved understanding of the relationship be-
tween distinctive features and their acoustic correlates, and a little more care
in the design and extraction of these attributes, it is conceivable that better

classification accuracy can be obtained.
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Figure 3.4: Network complexities of the various classification conditions in our
experimental paradigm

Another advantage of using acoustic attributes is savings on run-time com-

putations through reduction of input dimensions. Figure 3.4 compares the

complexities. measured as the number of connections in the artificial neu-

ral network. for each condition in our experimental paradigm. With a small

amount of preprocessing for computing the attributes, the use of acoustic at-

tributes can save about half of the computations required by the direct use of

spectral representation.

One potential source of discrepancy in our experiments has to do with

pitch normalization. No pitch normalization was performed on the mean-rate

response, whereas a pitch-normalized spectral center of gravity measure was

used as acoustic attributes. Pitch normalization in attribute extraction was

thought to be desirable since it can eliminate singularities that complicate the

search for a maximum FDC value in the optimization process as illustrated

in Figure 3.5, which plots the FDC score on the z-axis, and the lower and

upper frequency edges z and y on the z- and y- axes respectively. The fre-

quency edges yielding the highest FDC score are selected as the "optimized"

free parameters, as illustrated in Figure 3.5. The global maximum is easy to
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Figure 3.5: Choosing lower and upper frequency edges for the spectral center
of gravity to represent the feature BACK

find in this case since the three-dimensional surface is smooth. However. if

pitch normalization has not been included in our attribute extraction process.

"spikes" may appear on the three-dimensional surface. These spikes have high

FDC values regardless of the contour of the surface, i.e. they may be located

at local minima. Therefore, we have chosen to include pitch normalization in

our optimization process. We have conducted further experiments where pitch

normalization is included in the conditions A. E and F, and the performance

improvement obtained is below 1.5% in each case. According to McNemar's

test with a significance level of 0.001, the difference in performance is not

statistically significant. Therefore, any performance advantages that may be

brought about by speaker normalization is not an issue.

To introduce a set of linguistically motivated distinctive features as an

intermediate representation for phonetic classification, we first transform the

acoustic representations into a set of features, and then map the features into

vowel labels. While one may argue that such a two-step process is inherently

sub-optimal, we nevertheless were able to obtain comparable performance,

corroborating the findings of Leung [21]. Such an intermediate representation

can offer us a great deal of flexibility in describing contextual variations. For

example, all vowels sharing the feature [+ ROU ND] will affect the acoustic prop-

erties of neighboring consonants in predictable ways, which can be described
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more parsimoniously. By describing context dependencies thiis way. we can

aiso make use of training data more effectively b- collapsing all available data

along a given feature dimension.

Figure 3.3 shows that performance on some features is worse than others.

presumably due to inadequacies in the attributes that we use. For example.

performance on the feature [TENSE] should be improved by incorporating seg-

ment duration as an additional attribute. When a second classifier is used to

map the feature values into vowel labels. a 4-5% accuracy increase is realized

such that the performance is again comparable to cases without this interme-

diate feature representation. This result suggests that the acoustic-phonetic

information is preserved in the aggregate of the features, and that the subse-

quent performance recovery may be a consequence of the redundant nature of

distinctive features, as well as the ability of the second classifier to capture

various contextual effects.

3.6 Error Analyses

In order to compare the different experimental conditions in our paradigm

more thoroughly, the classification errors made in a typical iteration of each

condition A, B, D and F are tabulated in confusion matrices shown in Tables

D.1 to D.4 of Appendix D respectively. The rows correspond to the stimulus

to the network - the first entry of each row holds the transcription label of

the input token, and the last entry is the total number of test tokens carrying

that transcription. The columns correspond to the response of the network -

the first entry of each column represents the vowel label assigned to the input

token as a result of classification, and the last entry is the total number of test

tokens being assigned that label. Each of the remaining entries is a percentage

of vowel tokens. For example, in Table D.1, the fifth row and the sixth column

together show that out of the 158 /e/ vowels in the testing data, 16.5% have

been mislabelled as /i/, and there were a total of 230 test vowels labelled by
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the classifier as i

3.6.1 Mutual Information

To measure the performance of each condition. we compute the mutua! infor-

mation between the random variable X of the transcript:,a labels. and the

random variable Y of the vowel labels produced by the network '21.S . The

mutual information measures the average reduction of uncertainty in X after

observing Y. and is given by the equation

I(X; Y) = H(X) - H(XIY) (3.1)

where I(X; Y) is the mutual information between random variables X and Y.

H(X) is the entropy of X which measures its average uncertainty.

H(X) = -,Px(x)logPx(z) (3.2)

and H(XIY) is the conditional entropy which measures the uncertainty in X

having observed Y. given by

H(XIY) =- Y Pxy(xy)logPxjy(XzY) (3.3)

In the above equations, P'(x) is the probability distribution of X. PxIy(xly)

is the conditional probability distribution of X given Y and Pxy(xy) is the

joint probability of X and Y.

The mutual information is computed using the statistics from each confu-

sion matrix, and the result is tabulated in Figure 3.6.

The mutual information for conditions c and E are not computed because

some tokens have ambiguous feature assignments which do not match any

feature set of the 13 vowels in our vocabulary. An example of an ambigu-

ous feature vector is ([-HIGH], [-LOW], [-BACK], [-TENSE], [-LOUNrD] and [+

RETROFLEX]. This feature vector originates from a test vowel /3-/, but with
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Figure 3.6: Mutual information computed from the confusion matrices of con-
ditions A, B, D and F in the experimental paradigm
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the two features 'BACK" and ROU.NDi mapped incorrectly. AcroSs the re-

maining conditions. we obtain comparable mutual information values from

the respective confusion matrices, which show that there is no loss of informa-

tion caused by extracting acoustic attributes or implementing an intermediate

feature-based representation.

3.6.2 Utility of Feature Classification

In this subsection. we will address the usefulness of incorporating a second

MLP in the classification pathway, (c.f. conditions C and D. and conditions

E and F). The first MLP in conditions c and E delivered a set of ambiguous

features for over .5% of the test tokens. and therefore no vowel label could be

assigned to the tokens by table lookup. Mistakes made in a typical iteration

of the table-lookup procedure may be found from the confusion matrices in

Tables D.5 and D.6 included in appendix D. For example, in both conditions c

and E. a very prominent ambiguous feature vector is (001010) corresponding to

the features (-HIGH, -LOW, +BACK, -TENSE. +ROUND, -RETROFLEX). This

error occurs for a variety of input tokens. and most frequently for the phonemes

/a/ and /o/. which should have correct feature values of (011010) and (001110)

respectively. Another example is the ambiguous feature vector (100010), which

tends to occur to the phonemes /i/ and /i/ which should have correct feature

values of (100000) and (100110) respectively. One of the causes of failure in

the table-lookup procedure lies in the fact that it puts equal weighing for all

the features characterizing a phoneme, whereas in actuality, a phoneme can

be identified by accurate classification of some of the features. For instance,

the vowel /u/is often fronted when surrounded in alveolar context to form the

vowel /i/. Consequently, the feature [+BACK] is relatively unimportant in the

identification of the vowel. The more crucial features are perhaps [+HIGH],

[+TENSE] and [+ROUND]. In other words, in order to correctly classify the

vowel /u/ from a set of feature outputs, we should weigh [+HIGH], [+TENSE]

and [+ROUND] much heavier than [+BACK]. In addition, this set of weights
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shouid only apply to u.. and every other phoneme should have its own sec:",c

:-et of weights.

The second %ILP classifier is better able to handle this problem. The con-

nection weights have been trained so that when the feature set of a test token

is fed forward in the network. some features are weighted more heavily than

others. Therefore, conditions D and F are able to assign a vowel label to all

the ambiguous feature sets which occur in conditions c and E. Moreover. the

second classifier is also able o correct some of the the classification errors,

although at other times, it may alter an originally correct decision. In the it-

eration of condition D. out of the 970 feature errors made by the first classifier.

the second classifier corrected 189 but confused 160 originally correct features.

resulting in 941 feature errors after the second classifier. In condition F, out

of the 956 feature errors produced by the first classifier, the second classifier

corrected 148 but confused 154 originally correct features, resulting in 962 fea-

ture errors after the second classifier. Despite an increase of 6 feature errors in

the latter case, the second MLP classifier was able to recover the performance

from 59.9% of the table-lookup procedure to 63.1%, which indirectly shows

that some features are more important than others in the recognition of differ-

ent phonemes and performance would not be affected as much if the feature

mapping mistakes were made on the less crucial features or if the errors are

correlated. For each vowel, we can compare its proper feature assignment from

Table 3.2 with the quantized feature mapping output from the network. The

number of features different between the proper feature set and the mapped

feature set ranges from 0 (all features mapped correctly) to 6 (all features

mapped incorrectly). The cumulative percentage of tokens is plotted against

the number of binary features different, as shown in Figures 3.7 and 3.8. We

can see from these plots that over 95% of the confusions occur between vowels

that have two or fewer features different. Furthermore, comparing conditions

c with D and £ with F, we can see that there is an increase in the number of

tokens with all features mapped correctly, and a slight decrease in the number
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Figure 3.7: Performance of conditions c and D in terms of the number of
features different between network outputs and transcription labels

of tokens with one or two binary features different, suggesting that the sec-

ond classifier mostly corrects near-misses. For example, in conditions C and

E where the table lookup method is used, some of the vowel tokens of /i/

adjacent to the semivowel /1/ are often classified as /u/, while others adjacent

to the semivowel /y/ are often classified by as /i/. Other examples include

misclassifying /e/ or /1/, as //or /i/, and misclassifying a nasalized /z/ as

/e/. In these cases, the mistakes made are quite often corrected by the second

MLP.

3.7 Chapter Summary

In this chapter, we have described a methodology to extract a reasonable set of

acoustic attributes which attempts to capture the relevant aspects of the acous-
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Figure 3.8: Performance of conditions E and F in terms of the number of
features different between network outputs and transcription labels
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tic signal for vowel classification. We have founci that the use oi sucn acoustic

attributes can significantly reduce run-time computation tor feature mapping

and vowel classification with little cost to accuracy. Furthermore. the intro-

duction of an intermediate representation based on distinctive features can

potentially provide us with a flexible framework to describe contextual varia-

tions and make more effective use of training data. at no cost to classification

performance.
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Chapter 4

Signal Representation for
Acoustic Segmentation

This chapter is a brief extension of the work reported in Chapter 2, where

we make further comparisons ,f several acoustic representations based on seg-

mentation. Our attention is focused upon delineating the acoustic signal into

segments. where each segment correspond to an individual acoustic event.

Such an event, or group of events, can eventually be mapped into phonemes.

The vowel classification experiments reported in Chapter 2 use vowel tokens

which have been excised from the original speech signal using a time-aligned

phonetic transcription. Since phonetic recognition involves not only phonetic

classification, but segmentation as well, we should also investigate the appro-

priateness of signal representations for this second task.

For this part of our investigation, we use an automatic procedure for acous-

tic segmentation previously developed by Glass [101, where acoustic events are

embedded in a multi-level structure called a dendrogram. This method of

segmentation has an advantage over others based on single-level descriptions,

since it is capable of distinguishing fine to coarse acoustic changes in an ut-

terance. Furthermore, dendrogram segmentation uses relative measures in the

acoustic signal, which makes it more robust and largely independent of effects

such as speaker characteristics and background noise. Previously, dendrogram

segmentation has been used in conjunction with auditory models, where the
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onsets and offsets o sounds tend to be sharpened 1.1.33. In the foilowin sec-

"ions we wil' report experiments that have been conducted to compare different

acoustic representations for dendrogram segmentation.

4.1 Signal Representations

The three spectral representations compared here include one from the Sen-

eff's auditory model (the mean rate response), one mel-frequency represen-

tation (MIFSC), and the smoothed DFT. Processing sequences of these three

representations have previously been described in detail in Chapter 2. Seg-

mentation for each representation was done using an array of feature vectors

as input.

4.2 Acoustic Segmentation Algorithm

The algorithm used to establish acoustic segments is developed by Glass [11].

It aims to divide the acoustic signal into segments which are acoustically homo-

geneous. The procedure starts by measuring the similarity between each frame

and its neighboring frames (10 ms away), using a distance metric. An associ-

ation is then established between a given frame and its more similar neighbor.

from left to right along the time axis. When the association switches from

past to future, an acoustic boundary is marked.

The above procedure will divide a given utterance into many small seg-

ments. Such segments are used as "seed regions" and the average spectrum

for each region is computed. Two regions are merged to form a new single re-

gion if they are more similar to each other than to the other neighboring region.

This is done repetitively, with increasing distances between adjacent regions,

until "he entire utterance is described by a single region. The complete pro-

cess for an utterance can be displayed in a dendrogram by plotting the distance

between merged regions versus time, as illustrated in Figure 4.1. Boundaries

closer to the bottom of the dendrogram describe finer acoustic transitions.
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Figure 4.1: A dendrogram computed with a Euclidean distance metric.

whereas those nearer the top describe more abrupt acoustic transitions.

One way to assess the effectiveness of the segmentation procedure is to

search through the multi-level dendrogram for a path that best matches the

time-aligned phonetic transcription. As an example, the best matching path is

highlighted in white in Figure 4.1. In the alignment between the dendrogram

boundaries with the phone boundaries in the transcription, three kinds of

errors can arise. In the first case, the acoustic region can be mapped into

a phone, with some time differences between corresponding boundaries. The

second case is the deletion of a phonetic boundary in the dendrogram path, and

the third is the insertion of an extra acoustic boundary in the dendrogram path.

To search for the best path in the dendrogram [111, each possible pathway is

scored with the sum of these three kinds of error. The best matching pathway

is defined as the one yielding rnininai error.

4.3 Distance Metrics

As was mentioned in the previous section, the algorithm for dendrogran seg-

mentation utilizes two distance metrics - the association distance for generating
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the seed regions. and the r6gion distance required by the merging procedure.

In our experiments, the association and region distance metrics are kept the

same. and the Euclidean distance is used. Since it has been noted that the

Euclidean metric over-emphasizes the total gain in the region. and minimizes

the importance of spectral shape [39], a normalized Euclidean distance has

also been included in our experiments. Spec:fically. the Euclidean distance

between two vectors i and . is divided by the normalized dot product.

i't7
.VormalizationFactor 

=

It is easy to visualize that this normalizing factor is close to one if Y and

j have very similar spectral shapes, but much smaller if the spectral shapes

are very different. In the former case, the resulting distance is essentially the

same as the Euclidean distance, but in the latter case, the resulting distance

is magnified significantly.

4.4 Description of Experiment

Comparison is based on segmenting 500 utterances from 100 speakers of the

TIMIT corpus. These sentences contain 19,155 phones. For each acoustic

representation, two dendrograms are constructed for every sentence - one uses

the Euclidean distance and the other employs the normalized Euclidean metric.

The insertion and deletion are then tabulated individually. The overall results

are summarized in Figure 4.2.

4.5 Discussion

The mean rate response with normalized Euclidean distance and the MFSC

with Euclidean distance performed comparably well with dendrogram segmen-

tation, and better than the DFT. Normalizing the distance metric did not have

much effect on the DFT, and yet it increased the amount of insertions of the

MFSC (from 5.3% to 8.3%), and reduced both insertion and deletion rates of
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Figure 4.2: Insertion and deletion errors in dendrograrn segmentation using
three different acoustic representations
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the mean rate response, by 0.77- and 0.3'- respectiveiv1. C'loser e::amination

of the magnit'.des of the spectral vectors sheds some light on these discreD-

ancies. The mean rate coefficients all lie within the range of 0 to 7. and the

normaiized Euclidean distance works quite well at capturing the effect of spec-

tral shape similarity. The magnitudes of the DFT are relatively much larger

(mostly well below -100 dB). which means that the normalization factor. or

cosine of the angle between i and ;. tends to be close to 1 regardless of spectral

shape similarities. The normalized Euclidean distance does not work well for

the MFSC at all because the MFSC coefficients typically varies between -40

dB and 60 dB, which complicates the normalization factor with a sign change.

It is deduced that for the sake of comparison, a better-suited normalization

factor for the Euclidean distance metric may be [12]:

Normalization Factor = I * (1 + f + (Y -) ll- 0l)

where : and denote the mean of 1 and ; respectively, and f is a small additive

constant to ensure that the normalization factor is positive.

This normalization factor should range from 0 to 1 with increasing simi-

larity in the spectral shapes between i and 7.

Based on our present results, we may tentatively conclude that the MFSC

and the mean rate response perform equally well, and they both performed

better than the DFT. However, the results are highly dependent on the dis-

tance metric used.

4.6 Chapter Summary

In this chapter, we have reported preliminary experimental results on the

comparison of three acoustic representations for dendrogram segmentation -

the mean rate response from Seneff's auditory model, the MFSC and the DFT.

The insertion and deletion rates are tabulated in each case and it is found that

the mean rate with a normalized Euclidean distance metric and the MFSC
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with a -simple Euclidean distance rnpetric have performed comparably weji and

better than the DFT.
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Chapter 5

Conclusions and Future Work

5.1 Summary and Conclusions

In this thesis, we have made an initial attempt to assess the usefulness of

distinctive features for phonetic recognition. Distinctive features are a com-

pact inventory of linguistically- motivated units which can be used to concisely

describe the many variations in speech such as contextual and coarticulatory

phenomena. Therefore. they can potentially serve as powerful data reduc-

tion and refinement schemes in tasks of automatic speech recognition, where

problems such as variations in speech and sparse training data prevail.

In order to exploit the advantages of distinctive features in the task of

speech decoding, we need to first determine how these features are related

to the speech signal. Distinctive features manifest themselves as their acous-

tic correlates in the speech signal, but the nature and characteristics of these

acoustic correlates, as well as how they can be captured in the speech sig-

nal, are not well understood. In an attempt to extract acoustic attributes

which bear some information on the acoustic correlates, it is crucial to select

an appropriate acoustic representation. This will involve comparing acous-

tic representations and choosing the best one. The procedure by which this

comparison can be done, however, is not clear. One can start with a set of

defined attributes and then decide which acoustic representation will give the

best feature extraction results. Alternatively, one can begin with an acoustic
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representation beiieved to be superior -o other representations. and -hen at-

tempt to define and quantify some acoustic attributes. There is no apparent

reason for choosina one of these two approaches over the other. In this thesis.

the latter approach is adopted.

Chapter 2 describes a comparative study of acoustic representations for

vowel classification using the multi-layer perceptron. The representations

compared include those originating from Seneff's auditory model, the mel-

frequency representations and the Discrete Fourier Transform. The combined

outputs of Seneff's auditory model (SAM PC) gave the highest classification

performance with both clean and noisy test data. The next best representa-

tion was the mean rate response, followed by the synchronous response. the

mel-frequency representations (MFSC and MFCC) and the Discrete Fourier

Transform (DFT), in that order. Under the assumption that the acoustic

representation yielding the best vowel classification performance should be

most appropriate to be used for characterizing and quantifying the distinctive

features for vowels, we shuuld select SAM PC for our further experiments.

However. SAM PC is heterogeneous in nature since half of the representa-

tion corresponds to a rotated synchrony spectrum and the other half a rotated

mean rate spectrum, attribute extraction can be more conveniently done using

a spectral representation. Therefore. the mean rate response, which was the

second best represc.,tation, was chosen for our further studies.

Chapter 3 describes different methods of incorporating distinctive features

into the speech decoding framework. Acoustic attributes which are feature-

based have been used in place of the spectral representation. In addition,

attempts have been made to' map the acoustics into an intermediate phono-

logical representation of distinctive features, which are in turn combined to

yield vowels either by table lookup or feature classification. In other words,

the overall experiment compares six vowel classification methods, which result

from varying three conditional variables, namely, whether acoustic attributes

are extracted. whether an intermediate phonological representation was in-
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:roduced. and whether feature cla_s;.caton is pertormr.ed. The measurements

uszed as acoustic attributes are based on the spectral center of gravity, the

frequency edges of which are optimized for feature distinction in vowels. Our

experimental results show that attribute extraction serves as a useful data

reduction and refinement scheme. It can reduce the input dimensions approx-

imately by a factor of two. and bring about subsequent computational savings

by "he same proportion, without any significant loss in vowel classification

performance. We are also able to implement the intermediate phmnological

representation of features without significant deterioration in performance.

The thesis has focused on the task of vowel classification, where the left

and right boundaries of a vowel token have been given through a hand-labelled

procedure. In order to automate this process, the problem of segmentation of

speech is important. Chapter 4 addresses this issue by comparing the relative

merits of three acoustic representations in dendrogram segmentation. Den-

drogram segmentation aims at constructing a multi-level representation that

enables us to capture gradual and abrupt changes through a single hierar-

chical structure. The acoustic representations studied include the mean rate

response. the MIFSC and the DFT. We found that using a different acoustic

representation demz nds adopting a suitable distance metric, and therefore fair

comparison is not easy to acheve. Nevertheless, the mean rate and the MFSC

seem to work comparably well, and better than the DFT, within the context

of our experiments.

5.2 ]Future Work

5.2.1 Improvement with an Intermediate Representa-
tion

The paradigm that we have been exploring involves an intermediate represen-

tation of acoustic units (acoustic attributes) or/and phonological units (dis-

tinctive features) between the signal and the lexicon, as opposed to the direct
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c'.assiication of phonemes from the signal which has no intermediate repre-

,entation at all. These two experimental pathways are illustrated in Figure
.5. 1.

Path I

Spectral
Representation Phoneme- Classifier I

Path II

Spectral Disinciv
Representation Feature Features Phoneme

x -[ Extraction ,, Clsiirz

Figure 5.1: Phoneme classification with and without an intermediate repre-
sentation.

From an information theoretic point of view, where we assume that all

probabilities are known, or that infinite training data is available, information

is lost as more processing is done. This notion is captured by the Data Pro-

cessing Theorem [8]. Referring to path II in Figure 5.1. the theorem states

that:

If x, y and z form a "Markov Sequence", i.e. the processed output z depends

on x only through y, or Pr(zlx, y) = Pr(zly), for all z and all possible z and

y, then

I(X; Z) < I(X; Y)

Proof:
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I.X:YZ = I.: I- Ii.:Z = I.'X: Y

because

I(X: ZIY) PPr(yz)log pr(zly) -o
Zryx loPr(-: 1 y

where x. y and z are Markov

Also

I(X; YZ) = I(X; Z) + I(X. V"IZ) > I(X; Z)

So processing will bring about loss of information. Processing may put

information in a more useful form, but usually at the price of losing some

of the data. Therefore, according to information theory, it may seem that if

we are given all probabilities and allowed to optimize the classifier in path I,

then the single layer pathway (path I) should at least perform as well as the

double layer pathway (path II) which involves an intermediate representation.

In other words, I(X; U) > I(X; Z).

However, from a speech recognition viewpoint, we are constantly faced

with the problem of sparse training data which is insufficient for us to capture

the many variations in speech. As a result, we do not have a good idea of

how to go about optimizing the phoneme classifier in path I. Furthermore,

in our experiments, we have constrained classifier I and classifier II to be

similar in structure - both are multi-layer perceptrons - which means that

any optimization that can be done has to be of a particular form. Therefore

the data processing theorem may not be applicable in our circumstances. In

fact, if we consider one of the conditions in the experimental paradigm in

Chapter 3, where we employed a three-layer MLP for feature mapping and

another one for feature classification, the two-step pathway can be considered

as comparable to using a five-layer MLP to perform vowel classification directly

from the signal. A five-layer MLP probably requires more training data than
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a three-laver NILP as :n path Al for direct %owel cdas:ncat:on. :t 

conceivable that the additional layers may be more capable Qi" generalizing

the acoustics. Therefore it is not certain whether the two-step classification

process is inherently sub-optimal to the single-step classification process.

The data processing theorem. however, does shed some light on the follow-

ing aspect. If mapping the acoustic signal into an intermediate representation

(path II of Figure 5.1) is a less severe decision procedure than direct vowel

classification (path I). i.e. I(X: Y) > I(X. U). and if further processing in-

troduces information loss, then it may perhaps be advantageous to bypass the

feature classification process through representing the lexicon in terms of dis-

tinctive features. This, of course. will lead to a whole new series of problems

which are beyond the scope of this thesis.

The following is a sketch of several directions in which the work in this

thesis can be extended. The suggestions, however, are by no means exhaustive.

5.2.2 Extracting Acoustic Attributes

The spectral center of gravity measurement used in our Chapter 3 experiments

was chosen because it seems to be a reasonable attribute which carries some

kind of formant information. There is certainly room for improvement here.

Duration of a vowel token can be included, since it is a good acoustic correlate

for the feature [TENSE]. The feature [ROUND] tends to lower the second formant

of a vowel towards the first formant, which results in a prominent spectral

peak in the low frequency region. Another example which is more applicable

to consonants is the concentration of energy within certain frequency bands,

such as the concentration of frication energy above 4kHz for alveolar fricatives

like Is/ and /z/, as opposed to palatals like /i/ and /./, whose frication energy

goes well below the 4kHz cutoff. Aside from looking at different frequency

bands, dynamics in the time domain are also important. The diphthongs are

highly characterized by their longer duration and formant movement - the

upward movement of the second formant from [+BACK] to [-BACK] as in 'ay/
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and e . or conlrar:§. he downward movement of the second formant :rom

-BACK to '-ROUND' as in a-

Besides. in the extraction of acoustic attributes based on distinctive fea-

tures. it is important that we distinguish using features that are produced from

using features that are intended. This problem mainly stems from the effects of

contextual variation and coarticulation. These effects may exist to the extent

that the identity of the phoneme is changed. For example. the vowel in "dwell

is probably intended to be an /F/ which is [-HIGH]. [-LOW] and [-BACK]. but is

often produced like an /A/ which is [-HIGH], [-Low] and [+BACK], and some-

times even /i/ which is [+HIGH] and [-BACK]. Due to the existence of such

discrepancies. special care is required in the association of extracted attributes

with certain features. Another example is provided by the [BACK] vowel /u/

which is fronted to from /d/ in alveolar contexts as in "Tuesday'. In this case.

attention should be paid to the context and the vowel /fi/ should be trained

as f-BACKI rather than [+BACK]. We may also weigh f-HIGH] and [-Low] as

more likely to be produced than [+BACK] in the identification of /u/ or/ii.

It is believed that using features that are produced is more advantageous than

using those that are intended, simply because under many circumstances. the

latter cannot be objectively defined.

5.2.3 Feature Classification

We have already seen from our experiments in Chapter 3 that in the process

of combining features to give the vowel, using a table lookup procedure led to

a significant performance deterioration, but performing feature classification

by an MLP does not. The table lookup procedure puts equal emphasis on

all features, but the feature classfication procedure does not. This implies

that weights should be assigned to individual features for vowel or phoneme

classification. It also seems that this set of weights should vary from vowel to

vowel, or more generally, from phoneme to phoneme. For example. the features

[+HIGHI. [+BACK]. [--RO'ND! and [+TENSE] tend to be more important for
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characterizing the vowel u ti.an "*he :9atire RETROFLEX . On the other

hand. the feature 'RETROFLEX' tS more indicative of the vowel '-, than other

feat ures.

There is also some evidence that the distinctive features show hierarchy in

their structure [36]. Manner features. such as [NASAL], [VOICE]. "STRIDENT.

may be more --fundamental- or higher in the hierarchy than place features

since it is possible to identify them reliably simply by observing the speech

waveform and without utilizing any contextual information. For example.

in consonants - /t/. /d, /s/. /z/ and /n/ are all [ALVEOLAR], which has.

as its acoustic correlates, a second formant centered just below 2 kHz. and

major concentration of energy above 4kHz in frication or burst. If we were to

determine whether a consonant is [CORONAL], and this consonant neighbors

an unstressed vowel, the formant transitions in the vowel cannot be used as

a robust cue. But before we start searching for the energy concentration in

tae frication or the burst. we would need to identify whether the consonant

iS [.,ASAL]. because the consonant /n/ has neither a burst nor frication. This

Pxample serves to illustrate that there is some sort of hierarchy in the features

(oncerning consonants. As for vowels, it seems that the features [HIGH]. [LOW]

nd [BACK] can be more readily identified from the vowel formants and are

therefore considered as more fundamental than [ROU'ND] and [TENSE]. [-BACK]

vowels are never [+ROUND], and among the [+BACK] vowels, [ROUND] and

TEN sE] are not distinctive, since knowledge of these two features cannot enable

is to resolve between /a/ and /A/. The feature [RETROFLEX] is unique because

ts acoustic correlate - lowering of the third formant - is quite robust even with

,ontextual variations. nur feature mapping experiments have also yielded

the highest accuracy for this feature. Furthermore, [RETROFLEX] in a vowel

strongly indicates that the vowel is [-HIGH] and [- LOW]. This redundancy

between features can probably be exploited in attribute extraction, since for

some features like [TENSE], [+F EAT'RE] may be easier to detect in the acoustic

signal than [-FEATURE], or vice versa.
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The -ieome'rv o,d1istinc::ve features has vet ro be oete:m:.. Perf'ormance

improvement may perhaps be achieved bv relabie exraction of -he features

high in the hierarchy, or the features that are more likelv to be produced than

others within a particular context.

5.2.4 Acoustic Segmentation

The preliminary experiments on dendrogram segmentation have shown that

the ability to capture acoustic landmarks is sensitive to the choice of the

distance metric for different acoustic representations. A better distance metric

is required in order to conduct a fair comparison among different acoustic

representations. In addition. it may also be interesting to find out whether

certain acoustic representations can preserve acoustic regularities better than

others in the presence of noise.
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Appendix A

The Mel-frequency Cosine
Transform

This appendix attempts to provide a brief explanation of the cosine transform

employed in obtaining the mel-frequency cepstral coefficients (MFCC) from

the mel-frequency spectral coefficients (.MFSC). The idea of the computation

is to treat the MFSC as the Discrete Fourier Transform of the .MFCC.

As has been mentioned in Chapter 2, the MFSC are obtained from per-

forming bandpass summation on the power spectrum of a windowed speech

signal through a series of 40 overlapping triangular filters. The log energy

output of each filter together form the MFS - denoted by Xk, k = 1. 2. 3...40.

In order to treat this as the Discrete Fourier Transform of a real speech signal.

we have to impose even symmetry by folding the spectrum about an edge. as

illustrated in Figure A.1

Therefore, we can see that X, = Xo, X 2 = X-1, X 3 = X-.2 , etc., and the

symmetry lies about the axis of k = 1. In other words, if we shift our reference

origin to k = our spectrum becomes even symmetric in that X 0.5 = X-0.s,

X 1 .s = X- 1.5, X 2.5 = X- 2.5, etc., and we will be able to obtain a real signal by

performing an 80-point Inverse Discrete Fourier Transform (IDFT).

'This method of imposing even symmetry will preserve the maximum number of degrees
of freedom when one does the inverse transform, i.e. in this case, we can use an 80-point
IDFT. But if, for example, we re-label the indices for k to range between 0 to 39, the even
symmetry so created corresponds to a 78-point IDFT.
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MFSC

1 2 3 40 k

.. .. .. ........ ....... ... ..
-39 -2 -1 0 1 2 3 40 k

line of symmetry

Figure A.1: Imposing even symmetry on the spectrum of MFSC by folding
about an edge
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The IDFT equation for an SO-point DFT is:

7'. 9

L. .l

Shifting our reference origin to k = we have2'

k'= 79.5

x[n] l x s'
k'=O.5

k'=39.5 k'=79.5
-.XL,'- + Z X(e.k '

i 2k'n

k'=0.5 k'=40.5

k'=39.5 k'=-0.5
- Z Iff k'n + Z Xk,e r'

k'=0.5 k'=-39.5

k'=39.5 k'=39.5
- Z XeiiLk'n + Z x 2,e- 8 k'

k'=0.5 k'=0.5

k'=39.5

SZ Xk'co(k'n)
k'=0.5

(A.2)

where we have the property of even symmetry. Finally, recall that k ranges

from 1 to 40 whereas k' ranges from 0.3 to 39.5. so substituting variables, we

obtain:

S[1= k Xo[(-

k=40

(A.3)

which is our cosine transform equation.
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Appendix B

Detailed Statistics on Relative
Vowel Classification
Performances

As was mentioned in Chapter 2, the six acoustic representations are compared

by conducting vowel classification experiments. There are a total of four sepa-

rate experiments where the number of training tokens is increased from 2,000,

to 4,000, 8,000 and finally 20,000. Figure B.1 displays the average test set ac-

curacies over 3ix iterations of each experiment. The fluctuation in performance

between successive iterations lie around 1%.
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Figure B.A: Overall comparison results* for the six acoustic representations

78



Appendix C

Acoustic Attributes

This appendix lists the set of acoustic attributes used in the experiments re-

ported in Chapter 3. An acoustic attribute for a given feature includes the

frequency and amplitude of a spectral center of gravity, which is computed

between an optimized pair of lower and upper frequency edges. The pair of

free parameters is individually optimized for each third of the vowel token. so

as to implicitly capture the dynamics of articulation. In the following tables.

a frequency edge is expressed as a coefficient index in the mean rate response.

Since these coefficients are spaced a half-Bark apart. dividing the coefficient

index by two gives the correspond frequency in Barks.

The features [HIGH] and [LOW] use two attributes each. In Table C.1, the

first row displays the set of free parameters giving the maximum separation

between the classes [+HIGH] and [-HIGH] measured with the FDC score, and

the second row displays the free parameters giving the second highest FDC

score. Similarly, the feature [Low] also has two sets of free parameters. The

remaining features - [BACK], [TENSE], [ROUND] and [RETROFLEX] use only one

attribute per feature.
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Initial third of token Middle zhird of token Final third of token
lower edge upper edge lower edge upper edge lower edge upper edge

High 0 14 0 16 0 17
High 8 33 8 32 9 34
Low 0 14 0 14 0 15
Low 8 30 9 32 8 T 34
Back 12 30 13 29 12 J0
Tense 0 17 0 20 0 21
Round 0 36 0 36 12 : 30
Retroflex 19 34 19 34 19 30

Table C.1: Acoustic attributes with optimized free parameters
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Appendix D

Confusion Matices

The following are the confusion matrices obta;ned from experiments conducted

under conditions A through F in Chapter 3.
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e ae i E 1 0 u a 3 T A U U Tota
e 6.5 4 7 S 11 0 0 1 0 :3 0 0 135

4 63 0 15 7 1 0 6 2 0 :3 0 0 13,
.5 1 S7 0 4 0 0 0 0 0 0 2 0 266

_ - 10 1 46 16 2 0 1 1 7 7 0 0 156
1__ 4 9 10 61 0 1 0 0 2 1 2 2 21S

t 03 3 0 6 1 61 3 1 8 2 12 0 0 99

0 0 7 4 11 444 0 4 7 0 19 0 27
a 0 :3 0 1 0 2 0 74 12 1 7 0 0 167
3 0 0 0 0 1 11 0 2 63 1 1 0 1 140
T 1 1 0 0 2 0 0 1 0 91 0 2 0 82
A 0 9 0 10 7 2 1 14 4 3 48 0 2 12S

_ 1 2 14 1 8 0 11 0 0 2 0 59 0 3
uj0 3 0 0 38 13 6 0 9 0 16 0 16 32

Total 140 142 277 149 230 91 29 186 130 109 108 67 14

Table D.1: Confusion Matrix for Condition A - Classification of the Mean-Rate
Response into Vowels

e i E I 0 U a a 3 A u u Total
e 65 2 8 7 16 0 0 1 0 0 1 0 0 135
m_ 1 73 0 10 6 0 0 3 0 1 6 0 0 137
i 5 0 85 0 6 0 0 0 0 0 0 3 0 266

8 16 2 44 18 1 0 3 04 0 0 158
4 4 7 8 69 0 0 0 0 3 2 1 0 218

0 2 2 0 5 3 55 5 1 10 3 13 0 1 99
U 0 0 0 0 15 7 41 0 7 7 4 19 0 27
a 0 2 0 2 0 1 0 7T 8 1 8 0 0 167
a i 0 0 1 0 12 0 30 53 1 2 0 1 140

1. 0 0 0 5 0 0 1 0 85 1 6 0 82

A 0 9 0 20 5 1 0 16 3 3 43 0 0 128
a_ 1 2 16 0 14 2 10 0 0 8 0 46 0 83
u 0 0 .0 6 38 13 3 0 9 6 22 3 0 32

Total 129 158 269 147 267 84 26 203 107 104 117 58 3

Table D.2: Confusion Matrix for Condition B - Classification of Attributes
into Vowels
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e X I E 1 o u a 3 A U u Totai
e 7 2 7 4 13 0 0 0 0 0 1 0 0 11,5
ai2 72 1 16 4 0 0 .3 0 1 2 0 0 137<

i0 S5 0 6 0 0 0 0 0 0 2 0 266
_ 10 14 1 44 17 1 0 1 0 4 0 0 1.5i

T 4 9 S 63 1 0 0 0 4 1 2 1 2151
2 1 0 3 2 62 2 2 10 4 11 0 0 99

u 0 0 0 0 41141 0 4 4 4 26 7 27
a 0 2 0 1 0 2 0 77 10 1 7 0 0 167
o ,, 1 0 0 0 1 13 0 26 55 1 3 0 1 140

3- 0 0 0 2 4 0 1 1 0 87 1 4 0 S2
A 0 9 0 16 7 2 0 15 2 2 47 0 1 128
a 1 0 22 0 14 2 12 0 0 5 0 42 1 83
u 0 3 0 6 :38 9 6 0 6 6 19 :3 3 32

Total 1.54 149 274 143 243 99 26 190 110 103 116 55 10

Table D.3: Confusion Matrix for Condition D - Classification of Attributes
into Features and then to Vowels

e m E 1 0 U a 3 A a u Total
e 67 4 6 7 15 0 0 0 0 0 1 0 0 135
m 2 72 1 13 4 1 0 2 0 0 3 0 0 137
i 7 0 84 0 6 0 0 0 0 0 0 2 0 266

8 13 1 41 23 0 0 1 0 3 10 0 0 158

I 10 4 8 8 64 0 0 0 0 3 1 3 0 218
o 2 3 0 3 1 56 3 2 11 4 14 1 0 99
u 0 0 0 0 11 11 44 0 4 4 4 19 4 27
a 0 3 0 1 0 1 0 69 14 1 10 0 0 167

0 1 0 0 0 11 0 22 62 2 2 0 0 140
T" I 1 0 4 2 0 1 1 0 82 2 5 0 82
A 0 9 0 16 9 4 0 13 2 5 38 1 2 128

1 1 19 1 6 0 14 0 0 2 0 34 0 83
U 0 3 0 3 44 13 6 0 6 3 16 0 6 32

Total 149 159 267 143 255 85 31 171 128 98 114 67 5

Table D.4: Confusion Matrix for Condition F - Classification of the Mean-Rate
Response into Features and then into Vowels
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eE o u a a r A u U Foaal
e K.7 0 1.5 19 S 0 0 0 0 0 1 00 1.35

0 43 1 40 7 0 0 :3 0 0 3 0 0 1:37
i K5  0 S9 0 ,5 0 0 0 0 0 0 10 266

5 9 :3 58 11 0 0 1 0 0 9 0 0 1.58
2 1 15 17 53 0 0 0 0 1 1 1 1 21S

o 1 1 0 7 0 32 2 4 4 0 16 00 99
u 0 0 4 0 0 7 41 0 0 0 4 227 27
a 0 1 0 1 0 1 0 75 10 0 9 0 0 167

1 0 0 0 0 9 1 27 46 0 6 0 0 140
31 0 0 1 2 1 0 0 1 0 70 7 1 2 S2
A 1 6 0 23 .5 0 0 15 2 2 43 0 0 128
d 1 0 29 4 8 1 12 0 0 2 0 34 1 83
U 0 0 0 13 34 6 9 0 3 0 13 3 0 32

Total 106 91 320 256 190 70 27 192 88 63 129 41 S

Table D.5: Confusion Matrix for Path c - Classification of Attributes into
Features followed by table-lookup

e m i e 1 o u a T " A 6 U Total

e 61 2 10 17 7 0 0 0 0 0 1 0 0 1:35
1 52 1 32 1 1 0 7 0 0 3 0 0 137

i 6 0 88 1 3 0 0 0 0 0 0 2 0 266
£ 7 8 2 54 11 0 0 1 0 1 10 0 0 158

6 2 13 17 49 0 0 0 0 2 2 3 0 218

0 1 1 0 5 0 48 2 2 6 0 14 1 1 99
u 0 0 0 0 11 11 44 0 4 4 0 19 0 27
a 0 2 0 1 0 1 0 75 14 1 5 0 0 167

0 0 0 0 0 8 0 24 56 0 2 0 0 140
__ 1 1 0 4 1 0 1 0 0 74 4 4 0 82
A 0 3 0 17 5 0 0 16 3 3 38 1 1 128
fi 0 1 23 1 2 0 12 0 0 0 0 53 1 83
U 0 3 0 3 34 9 6 0 6 0 12 0 3 32

Total 125 106 300 227 165 67 28 193 115 74 106 65 3

Table D.6: Confusion Matrix for Path E - Classification of the Mean Rate
Response into Features followed by table-lookup
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